Publications by authors named "I Leith"

Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac (, ) is found to have been extremely valuable in long-distance trade ( AD 600-1150) from Egypt and China, where 6-8 kg N could purchase a human life, while air pollution associated with collection was attributed to this nitrogen form.

View Article and Find Full Text PDF

Although it is generally accepted that δN in lichen reflects predominating N isotope sources in the environment, confirmation of the direct correlation between lichen δN and atmospheric δN is still missing, especially under field conditions with most confounding factors controlled. To fill this gap and investigate the response of lichens with different tolerance to atmospheric N deposition, thalli of the sensitive Evernia prunastri and the tolerant Xanthoria parietina were exposed for ten weeks to different forms and doses of N in a field manipulation experiment where confounding factors were minimized. During this period, several parameters, namely total N, δN and chlorophyll a fluorescence, were measured.

View Article and Find Full Text PDF

Little information exists concerning the long-term interactive effect of nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. This study was conducted as part of a long-term N manipulation on Whim bog in south Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium (K) on N saturation of Sphagnum (S. capillifolium).

View Article and Find Full Text PDF

Different nitrogen forms affect different metabolic pathways in lichens. In particular, the most relevant changes in protein expression were observed in the fungal partner, with NO mostly affecting the energetic metabolism and NH affecting transport and regulation of proteins and the energetic metabolism much more than NO did. Excess deposition of reactive nitrogen is a well-known agent of stress for lichens, but which symbiont is most affected and how, remains a mystery.

View Article and Find Full Text PDF

Long-term additions of nitrogen (N) to peatlands have altered bryophyte growth, species dominance, N content in peat and peat water, and often resulted in enhanced Sphagnum decomposition rate. However, these results have mainly been derived from experiments in which N was applied as ammonium nitrate (NH4NO3), neglecting the fact that in polluted areas, wet deposition may be dominated either by NO3(-) or NH4(+). We studied effects of elevated wet deposition of NO3(-) vs.

View Article and Find Full Text PDF