Understanding how to catalytically break the C-H bond of aromatic molecules, such as polycyclic aromatic hydrocarbons (PAHs), is currently a big challenge and a subject of study in catalysis, astrochemistry, and planetary science. In the latter, the study of the breakdown reaction of PAHs on mineral surfaces is important to understand if PAHs are linked to prebiotic molecules in regions of star and planet formation. In this work, we employed a periodic density functional theory along with Grimme's D4 (DFT-D4) approach for studying the adsorption of a sample of PAHs (naphthalene, anthracene, fluoranthene, pyrene, coronene, and benzocoronene) and fullerene on the [010] forsterite surface and its defective surfaces (Fe-doped and Ni-doped surfaces and a MgO-Schottky vacancy) for their implications in catalysis and astrochemistry.
View Article and Find Full Text PDFAmino acids and polycyclic aromatic hydrocarbons (PAHs) belong to the range of organic compounds detected in meteorites. In this study, we tested empirically and theoretically if PAHs are precursors for amino acids in carbonaceous chondrites, as previously suggested. We conducted experiments to synthesize amino acids from fluoranthene (PAH), with ammonium bicarbonate as a source for ammonia and carbon dioxide under mimicked asteroidal conditions.
View Article and Find Full Text PDFDensity functional theory (DFT) has provided deep atomic-level insights into the adsorption behavior of aromatic molecules on solid surfaces. However, modeling the surface phenomena of large molecules on mineral surfaces with accurate plane wave methods (PW) can be orders of magnitude more computationally expensive than localized atomic orbitals (LCAO) methods. In the present work, we propose a less costly approach based on the DFT-D4 method (PBE-D4), using LCAO, to study the interactions of aromatic molecules with the {010} forsterite (MgSiO) surface for their relevance in astrochemistry.
View Article and Find Full Text PDFHomochirality is a generic and unique property of all biochemical life, and the fractional circular polarization of light it induces therefore constitutes a potentially unambiguous biosignature. However, while high-quality circular polarimetric spectra can be easily and quickly obtained in the laboratory, accurate measurements in the field are much more challenging due to large changes in illumination and target movement. In this study, we measured various targets in the field, up to distances of a few kilometers, using the dedicated circular spectropolarimeter TreePol.
View Article and Find Full Text PDF