Publications by authors named "I L OCHS"

Hot plasma is highly conductive in the direction parallel to a magnetic field. This often means that the electrical potential will be nearly constant along any given field line. When this is the case, the cross-field voltage drops in open-field-line magnetic confinement devices are limited by the tolerances of the solid materials wherever the field lines impinge on the plasma-facing components.

View Article and Find Full Text PDF

By producing localized wave regions at the ends of an open-field-line magnetic confinement system, ponderomotive walls can be used to differentially confine different species in the plasma. Furthermore, if the plasma is rotating, this wall can be magnetostatic in the laboratory frame, resulting in simpler engineering and better power flow. However, recent work on such magnetostatic walls has shown qualitatively different potentials than those found in the earlier, nonrotating theory.

View Article and Find Full Text PDF

Spectroscopic measurements of the magnetic field evolution in a Z-pinch throughout stagnation and with particularly high spatial resolution reveal a sudden current redistribution from the stagnating plasma (SP) to a low-density plasma (LDP) at larger radii, while the SP continues to implode. Based on the plasma parameters it is shown that the current is transferred to an increasing-conductance LDP outside the stagnation, a process likely to be induced by the large impedance of the SP. Since an LDP often exists around imploding plasmas and in various pulsed-power systems, such a fast current redistribution may dramatically affect the behavior and achievable parameters in these systems.

View Article and Find Full Text PDF

The proton-boron-11 (p-B11) fusion reaction is much harder to harness for commercial power than the easiest fusion reaction, namely, the deuterium and tritium (DT) reaction. The p-B11 reaction requires much higher temperatures, and, even at those higher temperatures, the cross section is much smaller. However, as opposed to tritium, the reactants are both abundant and nonradioactive.

View Article and Find Full Text PDF