Publications by authors named "I L GOFMAN"

Photo-crosslinkable methacrylated alginate derivatives (M-ALGs) were synthesized modification of sodium alginate with glycidyl methacrylate. Needle (capillary) and needleless electrospinning techniques were employed to produce their nonwoven fiber mats. Spinning parameters such as applied voltage, solution composition, and flow rate were optimized to form uniform bead-free fibers with an average diameter of about 150 nm.

View Article and Find Full Text PDF

Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other biomedical polymers. In this work, we proposed the covalent modification of NCC with amphiphilic polyanions such as modified heparin (Hep) and poly(-glutamic acid) (PGlu).

View Article and Find Full Text PDF
Article Synopsis
  • * The addition of CeONPs reduces fiber diameter and increases swelling and mechanical strength in the mats, while maintaining similar cell adhesion and compatibility with mesenchymal stem cells compared to standard CS-PEO mats.
  • * In vivo studies showed that CS-PEO-CeONP mats had no acute toxicity or adverse inflammation and displayed slower biodegradation, indicating potential for improved healing and tissue integration over time.
View Article and Find Full Text PDF

Silicon carbide (SiC) is a wide-band gap semiconductor that exceeds other semiconducting materials (except diamond) in electrical, mechanical, chemical, and radiation stability. In this paper, we report a novel approach to fabrication of SiC nano films on a Si substrate, which is based on the endotaxial growth of a SiC crystalline phase in a graphite-like carbon (GLC) matrix. GLC films were formed by carbonization of rigid rod polyimide (PI) Langmuir-Blodgett (LB) films on a Si substrate at 1000 °C in vacuum.

View Article and Find Full Text PDF

Annual bone grafting surgeries due to bone fractures, resections of affected bones, skeletal anomalies, osteoporosis, etc. exceed two million worldwide. In this regard, the creation of new materials for bone tissue repair is one of the urgent tasks of modern medicine.

View Article and Find Full Text PDF