In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress.
View Article and Find Full Text PDFThe type three secretion system (T3SS) is a membrane-anchored nano-machine utilized by many pathogenic bacteria to inject effector proteins and thus take control of host cells. In a recent article, Kaval et al. reveal a striking colocalization of a T3SS-encoding locus, its transcriptional activators, protein products, and the complete structure at the cell membrane, which they claim provides evidence for a mechanism known as ‘transertion’.
View Article and Find Full Text PDFSegregation of the replicating chromosome from a single to two nucleoid bodies is one of the major processes in growing bacterial cells. The segregation dynamics is tuned by intricate interactions with other cellular processes such as growth and division, ensuring flexibility in a changing environment. We hypothesize that the internal stochasticity of the segregation process may be the source of cell-to-cell phenotypic variability, in addition to the well-established gene expression noise and uneven partitioning of low copy number components.
View Article and Find Full Text PDFDuplication of the bacterial nucleoid is necessary for cell division hence specific arrest of DNA replication inhibits divisions culminating in filamentation, nucleoid dispersion and appearance of a-nucleated cells. It is demonstrated here that during the first 10 min however, enhanced residual divisions: the proportion of constricted cells doubled (to 40%), nucleoids contracted and cells remodelled dimensions: length decreased and width increased. The preliminary data provides further support to the existence of temporal and spatial couplings between the nucleoid/replisome and the sacculus/divisome, and is consistent with the idea that bacillary bacteria modulate width during the division process exclusively.
View Article and Find Full Text PDF