Publications by authors named "I Kuritka"

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.

View Article and Find Full Text PDF

This study introduces a novel, sustainable method for synthesizing sub-5 nm palladium nanoparticles (PdNPs) and covalently binding them to chitosan nanofibers (CHITs) using fully oxidized dialdehyde cellulose (DAC). Notably, the DAC acts not only as a reducing and stabilizing agent for PdNPs, but also as a linker for their rapid and spontaneous covalent attachment to CHITs via Schiff base chemistry. This unique approach yields PdNPs with a narrow size distribution (4.

View Article and Find Full Text PDF

The pollution of wastewater with pharmaceuticals and endocrine-disrupting chemicals (EDCs) in populated areas poses a growing threat to humans and ecosystems. To address this serious problem, various one-dimensional (1D) hierarchical ZnO-based nanostructures inspired by Anelosimus eximius cobwebs were developed and successfully grown on a glass substrate through simple hydrothermal synthesis. The nanorods (nr) obtained during primary growth were chemically etched with KOH (ZnO-KOH), followed by the secondary growth of nano cobweb-like (ncw) structures using polyethyleneimine (ZnO).

View Article and Find Full Text PDF

The rapid growth, integration, and miniaturization of electronics have raised significant concerns about how to handle issues with electromagnetic interference (EMI), which has increased demand for the creation of EMI shielding materials. In order to effectively shield against electromagnetic interference (EMI), this study developed a variety of thermoplastic polyurethane (TPU)-based nanocomposites in conjunction with CoFeO nanoparticles and graphite. The filler percentage and nanocomposite thickness were tuned and optimized.

View Article and Find Full Text PDF