Background: GABAA receptor (GABAAR) function is maintained by an endogenous phosphorylation mechanism for which the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the kinase. This phosphorylation is specific to the long intracellular loop I2 of the α1 subunit at two identified serine and threonine residues. The phosphorylation state is opposed by an unknown membrane-bound phosphatase, which inhibition favors the phosphorylated state of the receptor and contributes to the maintenance of its function.
View Article and Find Full Text PDFThe function of the gamma-aminobutyric acid type A receptor (GABA(A)R) is maintained by endogenous phosphorylation. We have shown that the corresponding kinase is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), using the locally produced glycolytic ATP. In addition, using cerebral tissue obtained during curative surgery for epilepsy, we showed that both the endogenous phosphorylation and the GABA(A)R function are significantly reduced in the "epileptogenic" cerebral cortex when compared to "control" tissue.
View Article and Find Full Text PDFBackground And Purpose: Animal models have provided very valuable data to specify the physiopathological mechanisms of the various forms of epilepsy. However, the question arises of knowing which of these experimental results are relevant to the human epileptic brain. The development of epileptic surgery makes it possible to directly study the functional properties of human brain tissue in vitro and to analyze the mechanisms underlying seizures and epileptogenesis.
View Article and Find Full Text PDFA reduction in GABAergic neurotransmission has been put forward as a pathophysiological mechanism for human epilepsy. However, in slices of human epileptogenic neocortex, GABAergic inhibition can be clearly demonstrated. In this article we present data showing an increase in the functional lability of GABAergic inhibition in epileptogenic tissue compared with nonepileptogenic human tissue.
View Article and Find Full Text PDFField potentials and intracellular recordings were obtained from human neocortical slices to study the role of gap junctions (GJ) in neuronal network synchronization. First, we examined the effects of GJ blockers (i.e.
View Article and Find Full Text PDF