Shiga toxin-producing (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes.
View Article and Find Full Text PDFMicrobiol Spectr
November 2024
Unlabelled: Shiga toxinproducing (STEC) are major foodborne pathogens that result in thousands of hospitalizations each year in the United States. Cattle, the natural reservoir, harbor STEC asymptomatically at the recto-anal junction (RAJ). The molecular mechanisms that allow STEC and non-STEC to adhere to the RAJ are not fully understood, in part because most adherence studies utilize human cell culture models.
View Article and Find Full Text PDFUnlabelled: O157:H7-adulterated food products are associated with disease outbreaks in humans. Although cattle feces are a source for O157:H7 contamination, it is unclear if human-associated outbreak isolates differentially colonize and shed in the feces of cattle from that of non-outbreak isolates. It is also unclear if phenotypes, such as biofilm formation, cell attachment, or toxin production, differentiate environmental O157:H7 isolates from those associated with human illness.
View Article and Find Full Text PDFShiga toxin-producing (STEC) are notorious foodborne pathogens, capable of causing severe diarrhea and life-threatening complications in humans. Cattle, acting as both primary reservoirs and asymptomatic carriers of STEC, predominantly harbor the pathogen in their rectoanal junction (RAJ), facilitating its transmission to humans through contaminated food sources. Despite the central role of cattle in STEC transmission, the molecular mechanisms governing STEC's adaptation in the RAJ of the asymptomatic reservoir host and its subsequent infection of human colonic epithelial cells, resulting in diarrhea, remain largely unexplored.
View Article and Find Full Text PDF