Background: Most aminoacyl-tRNA synthetases (aaRSs) specifically recognize all or part of the anticodon triplet of nucleotides of their cognate tRNAs. Class IIa and class IIb aaRSs possess structurally distinct tRNA anticodon-binding domains. The class IIb enzymes (LysRS, AspRS and AsnRS) have an N-terminal beta-barrel domain (OB-fold); the interactions of this domain with the anticodon stem-loop are structurally well characterised for AspRS and LysRS.
View Article and Find Full Text PDFLysyl-tRNA synthetase from Thermus thermophilus has been cocrystallized with either its cognate tRNAlys or Escherichia coli tRNAlys using ammonium sulfate as precipitant. The crystals grow from solutions containing a 1:2.5 stoichiometry of synthetase dimer to tRNA in 18-22% ammonium sulfate in 50 mM Tris-maleate buffer at pH 7.
View Article and Find Full Text PDFTwo distinct complexes between seryl-tRNA synthetase and tRNA(Ser) from Thermus thermophilus have been crystallized using ammonium sulphate as a precipitant. Form III crystals grow from solutions containing a 1:2.5 stoichiometry of synthetase dimer to tRNA.
View Article and Find Full Text PDFThe complex between seryl-tRNA synthetase and its cognate tRNA from the extreme thermophile Thermus thermophilus has been crystallized from ammonium sulphate solutions. Two different tetragonal crystal forms have been characterized, both diffracting to about 6 A using synchrotron radiation. One form grows as large bipyramids and has cell dimensions a = b = 127 A, c = 467 A, and the second form occurs as long, thin square prisms with cell dimensions a = b = 101 A, c = 471 A.
View Article and Find Full Text PDF