Publications by authors named "I Komang Januariyasa"

Surfaces endowed with three-dimensional (3D) mesostructures, showing features in the nanometer to micrometer range, are critical for applications in several fields of science and technology. Finding a fabrication method that is simultaneously inexpensive, simple, fast, versatile, highly scalable, and capable of producing complex 3D shapes is still a challenge. Herein, we characterize the photoreconfiguration of a micropillar array of an azobenzene-containing polymer at different light wavelengths and demonstrate the tailoring of the surface geometry and its related functionality only using light.

View Article and Find Full Text PDF

The measurement of the refractive index typically requires the use of optical ellipsometry which, although potentially very accurate, is extremely sensitive to the structural properties of the sample and its theoretical modeling, and typically requires specialized expertise to obtain reliable output data. Here, we propose a simple diffractive method for the measurement of the refractive index of homogenous solid thin films, which requires only the structuring of the surface of the material to be measured with the profile of a diffraction grating. The refractive index of an exemplary soft-moldable material is successfully estimated over a wide wavelength range by simply incorporating the measured topography and diffraction efficiency of the grating into a convenient scalar theory-based diffraction model.

View Article and Find Full Text PDF

A scaffold that mimics the physicochemical structure of bone at the nanoscale level is an attractive alternative to conventional bone grafts, but its development remains a main challenge in bone tissue engineering today. This work describes the fabrication of a nanofibrous poly(vinyl alcohol)/chitosan/carbonated hydroxyapatite (PVA/CS/CHAp) scaffold. CHAp nanoparticles were synthesized using a co-precipitation method, and nanofibrous PVA/CS/CHAp scaffolds were fabricated by electrospinning using CHAp concentrations of 0, 5, 10, 15, and 20 wt%.

View Article and Find Full Text PDF