Publications by authors named "I Kasatkin"

Silicon carbide (SiC) is a wide-band gap semiconductor that exceeds other semiconducting materials (except diamond) in electrical, mechanical, chemical, and radiation stability. In this paper, we report a novel approach to fabrication of SiC nano films on a Si substrate, which is based on the endotaxial growth of a SiC crystalline phase in a graphite-like carbon (GLC) matrix. GLC films were formed by carbonization of rigid rod polyimide (PI) Langmuir-Blodgett (LB) films on a Si substrate at 1000 °C in vacuum.

View Article and Find Full Text PDF

AlGaAsSb and AlGaAs films as thick as 1 μm with Al content as high as 60% were successfully grown by low-temperature (200 °C) MBE. To overcome the well-known problem of growth disruption due to a high aluminum content and a low growth temperature, we applied intermittent growth with the temperature elevation to smooth out the emerging roughness of the growth front. Post-growth annealing of the obtained material allowed us to form a developed system of As or AsSb nanoinclusions, which occupy 0.

View Article and Find Full Text PDF

HDPE-based nanocomposite fibers have been extruded from a melt and drawn up to draw ratio DR = 8. Two kinds of carbon nanodiscs (original ones and those exposed to additional annealing) have been used as fillers. Obtained nanocomposite fibers have been investigated with the help of different experimental methods: rheology, SEM and WAXS.

View Article and Find Full Text PDF

The anisotropic crystallite sizes in high-performance LiFePO powders were measured by XRD and compared with the particle sizes found by TEM image analysis. Lognormal particle size distribution functions were determined for all three main crystallographic axes. A procedure was developed to determine the fraction of the composite particles which consists of several crystallites and contains small- and large-angle boundaries.

View Article and Find Full Text PDF

The fibers based on thermoplastic partially crystalline polyetherimide R-BAPB modified by vapor grown carbon nanofibers (VGCF) were prepared by melt extrusion, exposed to orientational drawing, and crystallized. All of the samples were examined by scanning electron microscopy, X-ray scattering, and differential scanning calorimetry to study how the carbon nanofiller influences on the internal structure and crystallization behavior of the obtained R-BAPB fibers. The mechanical properties of the composite R-BAPB fibers were also determined.

View Article and Find Full Text PDF