Publications by authors named "I Karpova"

The transcriptome is subject to rapid and massive changes during the transition between developmental stages. These changes require tight control to avoid the undesired reactivation of gene expression that is only important for previous developmental stages and, if unchecked during transition between developmental stages, could lead to anarchic proliferation and formation of malignant tumors. In this context, the involvement of chromatin factors is important since they can directly regulate the expression of multiple genes at the same time.

View Article and Find Full Text PDF

The Trace Amine-Associated Receptor 1 (TAAR1) is one of the six functional receptors belonging to the family of monoamine-related G protein-coupled receptors (TAAR1-TAAR9) found in humans. However, the exact biological mechanisms of TAAR1 central and peripheral action remain to be fully understood. TAAR1 is widely expressed in the prefrontal cortex and several limbic regions, interplaying with the dopamine system to modulate the reward circuitry.

View Article and Find Full Text PDF

It is known that the trace amine-associated receptor 1 (TAAR1) receptor is involved in limbic brain functions by regulating dopamine transmission and putative reward circuitry. Moreover, other TAARs are expressed in the olfactory system of all studied vertebrate species, sensing innate socially-relevant odors, including pheromones. Therefore, one can assume that TAARs may play a role in rodent social and sexual behavior.

View Article and Find Full Text PDF

Objectives: To estimate costs of pharmacotherapy of recurrent depressive disorder (RDD) in a hospital-based care.

Methods: In the study, we analyzed the real-world practice in hospital-based care and the costs of RDD pharmacotherapy. A total of 119 case histories of patients who received a diagnosis of RDD and were hospitalized in 2017 were retrospectively analyzed.

View Article and Find Full Text PDF

Trace amine-associated receptors (TAARs) are a group of G protein-coupled receptors that are expressed in the olfactory epithelium, central nervous system, and periphery. TAAR family generally consists of nine types of receptors (TAAR1-9), which can detect biogenic amines. During the last 5 years, the TAAR5 receptor became one of the most intriguing receptors in this subfamily.

View Article and Find Full Text PDF