Study Question: What is the involvement of ovarian stroma in the anti-Müllerian hormone (AMH) signaling pathway and which stromal cells are involved?
Summary Answer: Mouse and human ovaries show high expression of AMH receptor II (AMHR2) in the stromal fibroblasts surrounding the follicles and activation of the post-AMHR2 pathway by recombinant AMH was evidenced by increased phosphorylation of SMAD1,5 and 9, increased expression AMHR2 and upregulation of αSMA, suggesting fibroblast activation to initiate myofibroblast differentiation.
What Is Known Already: AMH secreted by small growing follicles, regulates ovarian activity. It suppresses initial primordial follicle (PMF) recruitment and FSH-dependent growth.
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types.
View Article and Find Full Text PDFStudy Question: To what extent and how does combined administration of the follicle activation pathway suppressive agents temsirolimus (Tem) and c-terminus recombinant anti-Müllerian hormone (rAMH) protect against chemotherapy-induced ovarian reserve loss?
Summary Answer: Combined administration of Tem and rAMH completely prevents cyclophosphamide (Cy)-induced follicle depletion and protects the ovarian reserve in mice, primarily via primordial follicle (PMF) suppression of activation and to a lesser degree by reducing apoptosis.
What Is Known Already: There is conflicting evidence regarding the contributory roles of apoptosis and follicle activation in chemotherapy-induced PMF loss. Tem, a mammalian target of rapamycin (mTOR) inhibitor, reduces activity of the phosphoinositide 3-kinases-phosphatase and tensin homolog (PI3K-PTEN) pathway which provides intrinsic regulation of PMF activation.
Patients who are carriers of the hepatitis B virus (HBV) are at high risk of chronic liver disease (CLD) which proceeds from hepatitis, to fibrosis, cirrhosis and to hepatocellular carcinoma (HCC). The hepatitis B-encoded X antigen, HBx, promotes virus gene expression and replication, protects infected hepatocytes from immunological destruction, and promotes the development of CLD and HCC. For virus replication, HBx regulates covalently closed circular (ccc) HBV DNA transcription, while for CLD, HBx triggers cellular oxidative stress, in part, by triggering mitochondrial damage that stimulates innate immunity.
View Article and Find Full Text PDFFourier transform infrared, pump-probe polarization anisotropy, and two-dimensional infrared spectroscopies were used to study the steady-state and time-dependent behavior of carbon dioxide dissolved in three different polymer systems. Gas reorientation dynamics in poly(methyl methacrylate), poly(methyl acrylate), and poly(dimethylsiloxane) were sensitive to the nature of chemical interactions between the gas and polymer, as well as whether the polymer was in a glassy or rubbery phase. The homogeneous dynamics experienced by the asymmetric stretching vibration were found to be fastest for rubbery polymers with weak, nonspecific gas-polymer interactions.
View Article and Find Full Text PDF