Decisions surrounding the presence of infectious diseases are typically made in the face of considerable uncertainty. However, the development of models to guide these decisions has been substantially constrained by computational difficulty. This paper focuses on the case of finding the optimal level of surveillance against a highly infectious animal disease where time, space and randomness are fully considered.
View Article and Find Full Text PDFAn incursion of Foot-and-mouth disease (FMD) in a previously FMD-free country can cause significant economic damage from immediate and prolonged closure of FMD-sensitive markets. Whilst emergency vaccination may help contain disease, the presence of vaccinated animals complicates post-outbreak management and the recovery of FMD-free status for return to trade. We present enhancements to the Australian Animal DISease (AADIS) model that allow comparisons of post-outbreak management strategies for vaccinated animals, for the purposes of securing the earliest possible return to trade.
View Article and Find Full Text PDFDisease managers face many challenges when deciding on the most effective control strategy to manage an outbreak of foot-and-mouth disease (FMD). Decisions have to be made under conditions of uncertainty and where the situation is continually evolving. In addition, resources for control are often limited.
View Article and Find Full Text PDFThis study aimed to evaluate strategies to enhance the early detection of foot and mouth disease incursions in Australia. Two strategies were considered. First, improving the performance of the current passive surveillance system.
View Article and Find Full Text PDFThe time delay to detection of an outbreak of an emergency animal disease directly affects the size of the outbreak at detection and the likelihood that the disease can be eradicated. This time delay is a direct function of the efficacy of the surveillance system in the country involved. Australia has recently completed a comprehensive review of its general surveillance system examining regional variation in both the behaviour of modelled outbreaks of foot and mouth disease and the likelihood that each outbreak will be detected and reported to government veterinary services.
View Article and Find Full Text PDF