Publications by authors named "I J CARRE"

The rhizosphere is a key interface between plants, microbes and the soil which influences plant health and nutrition and modulates terrestrial biogeochemical cycling. Recent research has shown that the rhizosphere environment is far more dynamic than previously recognised, with evidence emerging for diurnal rhythmicity in rhizosphere chemistry and microbial community composition. This rhythmicity is in part linked to the host plant's circadian rhythm, although some heterotrophic rhizosphere bacteria and fungi may also possess intrinsic rhythmicity.

View Article and Find Full Text PDF

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis.

View Article and Find Full Text PDF

Phytoplankton are exposed to dramatic variations in light quality when cells are carried by upwelling or downwelling currents or encounter sediment. We investigated the potential impact of light quality changes in Ostreococcus, a key marine photosynthetic picoeukaryote, by analysing changes in its transcriptome, pigment content, and photophysiology after acclimation to monochromatic red, green, or blue light. The clade B species RCC809, isolated from the deep euphotic zone of the tropical Atlantic Ocean, responded to blue light by accelerating cell division at the expense of storage reserves and by increasing the relative level of blue-light-absorbing pigments.

View Article and Find Full Text PDF

Background: Recent studies demonstrated that microbiota inhabiting the plant rhizosphere exhibit diel changes in abundance. To investigate the impact of plant circadian rhythms on bacterial and fungal rhythms in the rhizosphere, we analysed temporal changes in fungal and bacterial communities in the rhizosphere of Arabidopsis plants overexpressing or lacking function of the circadian clock gene LATE ELONGATED HYPOCOTYL (LHY).

Results: Under diel light-dark cycles, the knock-out mutant lhy-11 and the gain-of-function mutant lhy-ox both exhibited gene expression rhythms with altered timing and amplitude compared to wild-type plants.

View Article and Find Full Text PDF

Background: A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD.

Methods: Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2 variant.

View Article and Find Full Text PDF