A major challenge in neuroscience is visualizing the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features but suffers from staining variability, tissue damage, and distortion, which impedes accurate 3D reconstructions. The emerging label-free serial sectioning optical coherence tomography (S-OCT) technique offers uniform 3D imaging capability across samples but has poor histological interpretability despite its sensitivity to cortical features.
View Article and Find Full Text PDFObjective: This preliminary study tested whether non-invasive, remote Elastic Scattering Spectroscopy (ESS) measurements obtained in the oral cavity can be used as a proxy to accurately differentiate between patients with laryngeal cancer versus laryngeal leukoplakia.
Methods: 20 patients with laryngeal lesions [cancer (n = 10),leukoplakia (n = 10)] were clinically assessed and categorized by otolaryngologists per standard clinical practice. Patient demographics of age, race, sex, and smoking history were collected.
A major challenge in neuroscience is to visualize the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features, but suffers from staining variability, tissue damage and distortion that impedes accurate 3D reconstructions. Here, we present a new 3D imaging framework that combines serial sectioning optical coherence tomography (S-OCT) with a deep-learning digital staining (DS) model.
View Article and Find Full Text PDFBackground: Skin cancer is the most common form of cancer worldwide. As artificial intelligence (AI) expands its scope within dermatology, leveraging technology may aid skin cancer detection.
Objective: To assess the safety and effectiveness of an elastic-scattering spectroscopy (ESS) device in evaluating lesions suggestive of skin cancer.
The combination of polarization-sensitive optical coherence tomography (PS-OCT) and birefringence microscopy (BRM) enables multiscale assessment of myelinated axons in postmortem brain tissue, and these tools are promising for the study of brain connectivity and organization. We demonstrate label-free imaging of myelin structure across the mesoscopic and microscopic spatial scales by performing serial-sectioning PS-OCT of a block of human brain tissue and periodically sampling thin sections for high-resolution imaging with BRM. In co-registered birefringence parameter maps, we observe good correspondence and demonstrate that BRM enables detailed validation of myelin (hence, axonal) organization, thus complementing the volumetric information content of PS-OCT.
View Article and Find Full Text PDF