We analyse the steady-state thermal regime of a one-dimensional triode resonant tunnelling structure. The high currents generated by resonant tunnelling produce a large amount of heat that could damage the structure. Establishing the conditions under which it can operate at optimum efficiency is therefore a problem of great relevance for applications.
View Article and Find Full Text PDFOne of the topical problems of materials science is the production of van der Waals heterostructures with the desired properties. Borophene is considered to be among the promising 2D materials for the design of van der Waals heterostructures and their application in electronic nanodevices. In this paper, we considered new atomic configurations of van der Waals heterostructures for a potential application in nano- and optoelectronics: (1) a configuration based on buckled triangular borophene and gallium nitride (GaN) 2D monolayers; and (2) a configuration based on buckled triangular borophene and zinc oxide (ZnO) 2D monolayers.
View Article and Find Full Text PDFWe analyze the radiative heat transfer between two parallel and infinitely long carbon nanotubes (CNTs). The radiative heat exchange is due to the difference between the Poynting vectors generated by the fluctuating currents when the CNTs are at different temperatures. The radiated and absorbed Poynting vectors are expressed in terms of the correlations of the electromagnetic fields obtained from the Green's function and the fluctuation-dissipation theorem for the current density.
View Article and Find Full Text PDFThin layers of silver nanowires are commonly studied for transparent electronics. However, reports of their terahertz (THz) properties are scarce. Here, we present the electrical and optical properties of thin silver nanowire layers with increasing densities at THz frequencies.
View Article and Find Full Text PDF