Publications by authors named "I Iu Kudriavtsev"

Anaphylatoxin C3a is a small signaling polypeptide that is generated during complement activation. C3a is involved in the regulation of various innate and adaptive immune system processes; however, the role of C3a in macrophage differentiation and polarization is poorly elucidated. Here we showed that C3a impairs alternative M2 polarization of human macrophages and suppressed CD206, IL1Ra and CCL22 expression.

View Article and Find Full Text PDF

Apolipoprotein A-I (ApoA-I) is a key component of reverse cholesterol transport in humans. In the previous studies, we demonstrated expression of the apoA-I gene in human monocytes and macrophages; however, little is known on the regulation of the apoA-I expression in macrophages during the uptake of modified low-density lipoprotein (LDL), which is one of the key processes in the early stages of atherogenesis leading to formation of foam cells. Here, we demonstrate a complex nature of the apoA-I regulation in human macrophages during the uptake of oxidized LDL (oxLDL).

View Article and Find Full Text PDF

Rationale: Glioblastoma multiforme (GBM) is one of the most aggressive human brain tumors. The prognosis is unfavorable with a median survival of 15 months. GBM aggressive nature is associated with a special phenotype of cancer cells that develops because of the transforming growth factor β (TGF-β).

View Article and Find Full Text PDF

The rate of symptom accumulation distinguishes between slowly and rapidly progressing forms of multiple sclerosis (MS). Given that a patient's genetics can affect the rate of disease progression, identification of genetic variants associated with rapid disease progression should provide valuable information for timely prognosis and development of optimal treatment plans. We hypothesized that the polymorphism rs2821557 in the human KCNA3 gene encoding a voltage-gated potassium channel Kv1.

View Article and Find Full Text PDF

Hypoxia plays a critical role in progression of atherosclerosis. Local oxygen deficiency in a plaque creates a specific microenvironment that alters the transcriptome of resident cells, particularly of macrophages. Reverse cholesterol transport from plaque to liver is considered a main mechanism for regression of atherosclerosis.

View Article and Find Full Text PDF