Sea ice is heavily contaminated with microplastics (MPs), with the repeatedly confirmed increased number of larger-sized particles, deficit of fibers, and prevalence of materials denser than the surrounding water. To get insight into the drivers behind such a specific pattern, sets of laboratory experiments were performed on the formation of ice by cooling from the surface of fresh and salty (NaCl, 34 g/L) water, with particles of different sizes from heavy plastics (HPP) distributed initially over the bottom of the experimental volume. After freezing, about 50-60 % of HPP were trapped in ice in all the runs.
View Article and Find Full Text PDFContamination of sea bottom sediments by microplastics is widely confirmed, but the reasons for its patchiness remain poorly understood. Laboratory experiments are reported where combined sets of various plastic particles, different by shape, size, density, and flexibility, were transported by the step-wise increasing open-channel flow over the bottom covered with natural sediment of increasing grain size. For every particular flow velocity, observations revealed the recurrent formation of relatively narrow retention areas, where plastic particles lingered for some time in their motion.
View Article and Find Full Text PDFAn abundance of microplastics particles (0.2-5 mm, MPs) in bottom sediments is analyzed based on 53 samples (3 to 215 m deep) obtained in 8 cruises of research vessels across the Baltic Sea Proper in March-October 2015-2016. MPs content varied between stations from 103 up to 10,179 items kg d.
View Article and Find Full Text PDFA simple stochastic numerical model is applied to obtain the distribution of the terminal settling/rising velocity of a set of MPs particles whose size, shape, and density have their distributions in accordance with field observations and production trends. Results of the direct Monte Carlo simulation are shown to reproduce well the data of laboratory experiments. Distributions of MPs by size and density appear to be more valuable for the final terminal velocity distribution compared to the influence of the distribution by shape.
View Article and Find Full Text PDFMechanical fragmentation of four commonly used plastics, from 2-cm squares or cubes to microplastics (MPs, <5 mm), is experimentally investigated using a rotating laboratory mixer mimicking the sea swash zone with natural beach sediments (large and small pebbles, granules, sand). Macro-samples were prepared from brittle not-buoyant PS (disposable plates), flexible thin film of LDPE (garbage bags), highly buoyant foamed PS (building insulation sheets), and hard buoyant PP (single-use beverage cups). With a great variety of behaviors of plastics while mixing, coarser sediments (pebbles) have higher fragmentation efficiency than sands (measured as the mass of generated MPs), disregarding sinking/floating or mechanical properties of the samples.
View Article and Find Full Text PDF