The rising global population and rapid industrialization have frequently resulted in a significant escalation in energy requirements. Hydrogen, renowned for its eco-friendly and renewable characteristics, has garnered substantial interest as a fuel alternative to address the energy needs currently fulfilled by fossil fuels. Embracing such energy substitutes holds pivotal importance in advancing environmental sustainability, aiding in the reduction of greenhouse gas emissions - the primary catalysts of global warming and climate fluctuations.
View Article and Find Full Text PDFBiohydrogen is considered a green fuel due to its eco-friendly nature since it only produces water and energy on combustion. However, their lower yield and production rate is one of the foremost challenges that need an instant sustainable approach. The use of nanotechnology is a potential approach for the enhanced generation of biohydrogen, owing to the significant characteristics of the nanomaterials such as greater specificity, high surface-area-to-volume ratio, better reactivity and dispersibility, enhanced catalytic activity, superb selectivity, greater electron transfer, and better anaerobic microbiota activity.
View Article and Find Full Text PDFSulfate (SO) is a major water and environmental concern that causes severe diarrhea, death of invertebrates and plant species, and clogging of industrial pipes. In the current work, treatment of SO from synthetic and real groundwater having 3901 mg(SO)/L was investigated for the first time using Zn-Al and Mg-Al layered double oxides doped granular activated carbon (GAC/Mg-Al LDO and GAC/Zn-Al LDO). The co-precipitation method was followed to synthesize the GAC/LDO composites using an Mg or Zn to Al molar ratio of 3:1.
View Article and Find Full Text PDFIn this research study, waste fly ash (WFA) underwent acid activation and subsequent amine functionalization using ammonia solution. This treatment improves the porosity, thermal tendency and crystallinity of WFA. Modified WFA was tested under different experimental conditions to treat the wastewater consisting of different concentrations of cationic (methylene blue and rhodamine 6G) and anionic (methyl orange) dyes.
View Article and Find Full Text PDFLayered double hydroxides (LDHs) have shown exciting applications in water treatment because of their unique physicochemical properties, which include high surface areas, tunable chemical composition, large interlayer spaces, exchangeable content in interlayer galleries, and ease of modification with other materials. Interestingly, their surface, as well as the intercalated materials within the layers, play a role in the adsorption of the contaminants. The surface area of LDH materials can be further enhanced by calcination.
View Article and Find Full Text PDF