Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.
View Article and Find Full Text PDFIonization and excitation of the uracil molecules by electron impact is investigated. Production of positive ions of uracil molecules (nucleic acid base) was studied using a crossed electron and molecular beam technique. The method developed by the authors enabled the molecular beam intensity to be measured and the electron dependences and the absolute values of the total cross sections of production of both positive ions to be determined.
View Article and Find Full Text PDF