Publications by authors named "I I Proskuryakov"

In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of generation of singlet-excited oxygen, potent chemical oxidant. This process in the reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine at the 177 position of the L-subunit with histidine results in the sharp decrease of activation energy, so that the carotenoid triplets are populated even at 10 K.

View Article and Find Full Text PDF

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.

View Article and Find Full Text PDF

Structural changes in phosphatidylcholine lipid membranes caused by the introduction of insoluble CoFeO nanoparticles (NPs) are analyzed. Changes in nuclear magnetic resonance spectrum, infrared spectrum, and ionic conductivity of membranes are observed with the addition of NPs. The presence of NPs in membranes is proved by atomic force and magnetic force microscopy.

View Article and Find Full Text PDF

The mechanism of bacteriochlorophyll photooxidation in light-harvesting complexes of a number of purple photosynthetic bacteria when the complexes are excited into the carotenoid absorption bands remains unclear for many years. Here, using narrow-band laser illumination we measured action spectrum of this process for the spectral ranges of carotenoid and bacteriochlorophyll. It is shown that bacteriochlorophyll excitation results in almost no photooxidation of these molecules, while carotenoid excitation leads to oxidation with quantum yield of about 0,0003.

View Article and Find Full Text PDF