Publications by authors named "I I Perminova"

The uncontrolled use of antibiotics has led to a global problem of antimicrobial resistance. One of the main mechanisms of bacterial resistance is the formation of biofilms. In order to prevent the growth of antimicrobial resistance, it is crucial to develop new antibacterial agents that are capable of inhibiting the formation of biofilms.

View Article and Find Full Text PDF

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.

View Article and Find Full Text PDF

This article describes the one-pot microwave synthesis of silver nanoparticles (AgNPs) assisted with natural polyelectrolytes-humic substances (HS). The humic polyelectrolytes served both as chemical reductants for silver ions and as end-capping agents for AgNPs. Three commercially available sodium humates extracted from lignites and leonardite and one sodium fulvate isolated from natural brown water seeped through peat deposits were used in this study.

View Article and Find Full Text PDF

A search for novel sources of biologically active compounds is at the top of the agenda for biomedical technologies. Natural humic substances (HSs) contain a large variety of different chemotypes, such as condensed tannins, hydrolyzable tannins, terpenoids, lignins, etc. The goal of this work was to develop an efficient separation technique based on solid-phase extraction (SPE) for the isolation of narrow fractions of HS with higher biological activity compared to the initial material.

View Article and Find Full Text PDF

The current article describes the biological activity of new biomaterials combining the "green" properties of humic substances (HSs) and silver nanoparticles. The aim is to investigate the antioxidant activity (AOA) of HS matrices (macroligands) and AgNPs stabilized with humic macroligands (HS-AgNPs). The unique chemical feature of HSs makes them very promising ligands (matrices) for AgNP stabilization.

View Article and Find Full Text PDF