The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization.
View Article and Find Full Text PDFEur Phys J C Part Fields
December 2022
Measurements of the associated production of a W boson and a charm ( ) quark in proton-proton collisions at a centre-of-mass energy of 8 are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 collected by the CMS detector at the LHC.
View Article and Find Full Text PDFMultiparticle azimuthal correlations of prompt D^{0} mesons are measured in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution (v_{2}) of D^{0} mesons as a function of event centrality and the D^{0} transverse momentum.
View Article and Find Full Text PDFA search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb^{-1} recorded in proton-proton collisions with the CMS detector at sqrt[s]=13 TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively.
View Article and Find Full Text PDF