Publications by authors named "I I Baskin"

This paper reviews the application of machine learning to the inhibition of corrosion by organic molecules. The methodologies considered include quantitative structure-property relationships (QSPR) and related data-driven approaches. The characteristic features of their key components are considered as applied to corrosion inhibition, including datasets, response properties, molecular descriptors, machine learning methods, and structure-property models.

View Article and Find Full Text PDF

Conjugated QSPR models for reactions integrate fundamental chemical laws expressed by mathematical equations with machine learning algorithms. Herein we present a methodology for building conjugated QSPR models integrated with the Arrhenius equation. Conjugated QSPR models were used to predict kinetic characteristics of cycloaddition reactions related by the Arrhenius equation: rate constant , pre-exponential factor , and activation energy .

View Article and Find Full Text PDF

In order to better foramize it, the notorious inverse-QSAR problem (finding structures of given QSAR-predicted properties) is considered in this paper as a two-step process including (i) finding "seed" descriptor vectors corresponding to user-constrained QSAR model output values and (ii) identifying the chemical structures best matching the "seed" vectors. The main development effort here was focused on the latter stage, proposing a new attention-based conditional variational autoencoder neural-network architecture based on recent developments in attention-based methods. The obtained results show that this workflow was capable of generating compounds predicted to display desired activity while being completely novel compared to the training database (ChEMBL).

View Article and Find Full Text PDF

Modern QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation, which affects the predictive performance.

View Article and Find Full Text PDF

The most widely used QSAR approaches are mainly based on 2D molecular representation which ignores stereoconfiguration and conformational flexibility of compounds. 3D QSAR uses a single conformer of each compound which is difficult to choose reasonably. 4D QSAR uses multiple conformers to overcome the issues of 2D and 3D methods.

View Article and Find Full Text PDF