Reducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.
View Article and Find Full Text PDFA new unsymmetric small-molecule acceptor (SMA) BTPOSe-4F was designed by unsymmetric structure modification to Y6 with an alkyl upper side chain replaced by an alkoxy side chain and a sulfur atom in its central fused ring replaced by a selenium atom, for the application as an acceptor to fabricate organic solar cells (OSCs). BTPOSe-4F exhibits a higher lowest unoccupied molecular orbital (LUMO) energy level, a reduced nonradiation energy loss, and better charge extraction properties in its binary OSCs with a higher of 0.886.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
In organic solar cells (OSCs), a thick active layer usually yields a higher photocurrent with broader optical absorption than a thin active layer. In fact, a ∼300 nm thick active layer is more compatible with large-area processing methods and theoretically should be a better spot for efficiency optimization. However, the bottleneck of developing high-efficiency thick-film OSCs is the loss in fill factor (FF).
View Article and Find Full Text PDFAll-polymer solar cells (all-PSCs) have drawn growing attention and achieved tremendous progress recently, but their power conversion efficiency (PCE) still lags behind small-molecule-acceptor (SMA)-based PSCs due to the relative difficulty on morphology control of polymer photoactive blends. Here, low-cost PTQ10 is introduced as a second polymer donor (a third component) into the PM6:PY-IT blend to finely tune the energy-level matching and microscopic morphology of the polymer blend photoactive layer. The addition of PTQ10 decreases the π-π stacking distance, and increases the π-π stacking coherence length and the ordered face-on molecular packing orientation, which improves the charge separation and transport in the photoactive layer.
View Article and Find Full Text PDFAll-polymer solar cells (all-PSCs) based on polymerized small molecular acceptors (PSMAs) have made significant progress recently. Here, we synthesize two A-DA'D-A small molecule acceptor based PSMAs of PS-Se with benzo[c][1,2,5]thiadiazole A'-core and PN-Se with benzotriazole A'-core, for the studies of the effect of molecular structure on the photovoltaic performance of the PSMAs. The two PSMAs possess broad absorption with PN-Se showing more red-shifted absorption than PS-Se and suitable electronic energy levels for the application as polymer acceptors in the all-PSCs with PBDB-T as polymer donor.
View Article and Find Full Text PDF