Background: The incidence and mortality of colorectal cancer (CRC) are persistently higher in men than in women. CRC malignancy is strongly influenced by small non-coding RNAs (miRNAs). Moreover, deregulation of the circadian molecular oscillator has been associated with CRC facilitation.
View Article and Find Full Text PDFThe present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition.
View Article and Find Full Text PDFThe small non-coding RNA miR-34a is a p53-regulated miRNA that acts as a tumour suppressor of colorectal cancer (CRC). Oncogenesis is also negatively influenced by deregulation of the circadian system in many types of tumours with various genetic backgrounds. As the clock gene per2 was recently recognized as one of the target genes of miR-34a, we focused on the miR-34a-mediated influence on the circadian oscillator in CRC cell lines DLD1 and LoVo, which differ in their p53 status.
View Article and Find Full Text PDFRadiofrequency electromagnetic fields (RF-EMF) exert pleiotropic effects on biological processes including circadian rhythms. miR-34a is a small non-coding RNA whose expression is modulated by RF-EMF and has the capacity to regulate clock gene expression. However, interference between RF-EMF and miR-34a-mediated regulation of the circadian oscillator has not yet been elucidated.
View Article and Find Full Text PDFStudy was focused on regulatory interactions between the circadian system and the renin-angiotensin system in control of microRNA (miRNA) biosynthesis. Responsiveness of the miRNA biosynthetic pathway, selected pre-miRNAs and clock genes to angiotensin II (AngII) infusion was analysed in the suprachiasmatic nuclei (SCN), liver, kidney and heart during a 24-h cycle. per2 exerted a rhythmic expression profile in all analysed tissues.
View Article and Find Full Text PDF