The human intestine plays a pivotal role in nutrient absorption and immune system regulation. Along the longitudinal axis, cell-type composition changes to meet the varying functional requirements. Therefore, our protocol focuses on the processing of the whole human intestine to facilitate the analysis of region-specific characteristics such as tissue architecture and changes in cell populations.
View Article and Find Full Text PDFOrgan-on-chip technology is a powerful tool for in vitro modeling. Combining it with organoids overcomes lumen inaccessibility while preserving cellular diversity and function of the intestinal epithelium. Here, we present a protocol for generating and analyzing organ-on-chips using human and mouse intestinal organoids.
View Article and Find Full Text PDFHuman intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients.
View Article and Find Full Text PDFAim: The sodium/hydrogen exchanger 2 (NHE2) is an intestinal acid extruder with crypt-predominant localization and unresolved physiological significance. Our aim was to decipher its role in colonic epithelial cell proliferation, differentiation and electrolyte transport.
Methods: Alterations induced by NHE2-deficiency were addressed in murine nhe2 and nhe2 colonic crypts and colonoids, and NHE2-knockdown and control Caco2Bbe cells using pH-fluorometry, gene expression analysis and immunofluorescence.
Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses.
View Article and Find Full Text PDF