Publications by authors named "I Heggli"

This study aimed to develop a method allowing high-dimensional and technically uniform screening of surface markers on cells of hematopoietic origin. High-dimensional screening of cell phenotypes is primarily the domain of single-cell RNA sequencing (RNAseq), which allows simultaneous analysis of the expression of thousands of genes in several thousands of cells. However, rare cell populations can often substantially impact tissue homeostasis or disease pathogenesis, and dysregulation of rare populations can easily be missed when only a few thousand cells are analyzed.

View Article and Find Full Text PDF

Introduction: The vertebral cartilage endplate (CEP), crucial for intervertebral disc health, is prone to degeneration linked to chronic low back pain, disc degeneration, and Modic changes (MC). While it is known that disc cells express toll-like receptors (TLRs) that recognize pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), it is unclear if CEP cells (CEPCs) share this trait. The CEP has a higher cell density than the disc, making CEPCs an important contributor.

View Article and Find Full Text PDF

Introduction: Modic changes (MC) are bone marrow lesions of vertebral bones, which can be detected with magnetic resonance imaging (MRI) adjacent to degenerated intervertebral discs. Defined by their appearance on T1 and T2 weighted images, there are three interconvertible types: MC1, MC2, and MC3. The inter-observer variability of the MRI diagnosis is high, therefore a diagnostic serum biomarker complementing the MRI to facilitate diagnosis and follow-up would be of great value.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the disc microbiome, challenging the idea that intervertebral discs are sterile and aiming to understand differences in microbiome findings between non-Modic and Modic discs.
  • Using 16S rRNA sequencing, researchers analyzed 70 discs, revealing that bioinformatic methods significantly affect results, with only limited overlap with previous studies.
  • The conclusion confirms that dysbiosis (an imbalance of microbial communities) exists in Modic discs, but the variation in findings from this and earlier research can't be fully explained by bioinformatic choices alone.
View Article and Find Full Text PDF

Background: The multimodal properties of mesenchymal stromal cells (MSCs), particularly their ability to modulate immune responses is of high interest in translational research. Pro-inflammatory, hypoxic, and 3D culture priming are promising and often used strategies to improve the immunosuppressive potency of MSCs, but the underlying mechanisms are not well understood. Therefore, the aims of this study were (i) to compare the effects of pro-inflammatory, hypoxic, and 3D culture priming on the in vitro immunosuppressive potential of MSCs, (ii) to assess if immunosuppressive priming effects are temporally preserved under standard and translationally relevant culture conditions, and (iii) to investigate if the three priming strategies engage the same immunosuppressive mechanisms.

View Article and Find Full Text PDF