Angew Chem Int Ed Engl
December 2024
Copper (Cu) is a transition metal that plays crucial roles in cellular metabolism. Cu homeostasis is upregulated in many cancers and contributes to tumorigenesis. However, therapeutic strategies to target Cu homeostasis in cancer cells are rarely explored because small molecule Cu chelators have poor binding affinity in comparison to the intracellular Cu chaperones, enzymes, or ligands.
View Article and Find Full Text PDFIn contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions.
View Article and Find Full Text PDFThe complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters.
View Article and Find Full Text PDF