By consuming ammonium and nitrite, anammox bacteria form an important functional guild in nitrogen cycling in many environments, including marine sediments. However, their distribution and impact on the important substrate nitrite has not been well characterized. Here we combined biogeochemical, microbiological, and genomic approaches to study anammox bacteria and other nitrogen cycling groups in two sediment cores retrieved from the Arctic Mid-Ocean Ridge (AMOR).
View Article and Find Full Text PDFOxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units.
View Article and Find Full Text PDFEnergy/power availability is regarded as one of the ultimate controlling factors of microbial abundance in the deep biosphere, where fewer cells are found in habitats of lower energy availability. A critical assumption driving the proportional relationship between total cell abundance and power availability is that the cell-specific power requirement keeps constant or varies over smaller ranges than other variables, which has yet to be validated. Here we present a quantitative framework to determine the cell-specific power requirement of the omnipresent ammonia-oxidizing archaea (AOA) in eight sediment cores with 3-4 orders of magnitude variations of organic matter flux and oxygen penetration depth.
View Article and Find Full Text PDFModern marine hydrothermal vents occur in a wide variety of tectonic settings and are characterized by seafloor emission of fluids rich in dissolved chemicals and rapid mineral precipitation. Some hydrothermal systems vent only low-temperature Fe-rich fluids, which precipitate deposits dominated by iron oxyhydroxides, in places together with Mn-oxyhydroxides and amorphous silica. While a proportion of this mineralization is abiogenic, most is the result of the metabolic activities of benthic, Fe-oxidizing bacteria (FeOB), principally belonging to the Zetaproteobacteria.
View Article and Find Full Text PDF