Publications by authors named "I H Stairs"

The precise origins of fast radio bursts (FRBs) remain unknown. Multiwavelength observations of nearby FRB sources can provide important insights into the enigmatic FRB phenomenon. Here we present results from a sensitive, broadband X-ray and radio observational campaign of FRB 20200120E, the closest known extragalactic repeating FRB source (located 3.

View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are brief bursts of radio waves from distant galaxies, and their emission mechanisms are still debated, focusing on processes near a central engine versus shocks at large distances.
  • Researchers measured two scintillation scales for FRB 20221022A, one linked to the Milky Way and the other to its host galaxy, which allowed them to determine the FRB's emission region size to be less than 3 x 10 kilometers.
  • This size contradicts the large-distance model and suggests that the emission likely occurs close to a central compact object, supported by an observed S-shaped polarization angle, indicating a magnetospheric emission process.
View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are intense signals from deep space that last for milliseconds and share some characteristics with pulsars, suggesting they may originate from neutron stars.
  • Despite similarities, FRBs like 20221022A display different patterns in their linear polarization position angle (PA), particularly a 130° rotation that aligns with pulsar behaviors, hinting at magnetospheric origins.
  • This study rules out short-period pulsars as potential sources for FRB 20221022A, supporting the idea that its unique PA evolution fits the rotating vector model commonly used for pulsars.
View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are brief radio wave signals from space, occurring over milliseconds, and can be seen from billions of light-years away.
  • Researchers detected a specific FRB, named 20191221A, which has a periodic separation of 216.8 milliseconds between its components, indicating a potential link to neutron stars.
  • The unique characteristics of this burst, including its longer duration and multiple components, suggest that the emission likely originates from within the magnetosphere of a neutron star rather than from more distant regions.
View Article and Find Full Text PDF

Fast radio bursts (FRBs) are flashes of unknown physical origin. The majority of FRBs have been seen only once, although some are known to generate multiple flashes. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission.

View Article and Find Full Text PDF