Breast cancer is the most frequent and one of the most fatal malignancies among women. Within the concept of personalized medicine, molecular characterization of tumors is usually performed by analyzing somatic mutations, RNA gene expression signatures or the proteome by mass-spectrometry. Alternatively, the immunological fingerprint of the patients can be analyzed by protein microarrays, which is able to provide another layer of molecular pathological information without invasive intervention.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
February 2018
Characterization of the colon cancer immunome and its autoantibody signature from differentially-reactive antigens (DIRAGs) could provide insights into aberrant cellular mechanisms or enriched networks associated with diseases. The purpose of this study was to characterize the antibody profile of plasma samples from 32 colorectal cancer (CRC) patients and 32 controls using proteins isolated from 15,417 human cDNA expression clones on microarrays. 671 unique DIRAGs were identified and 632 were more highly reactive in CRC samples.
View Article and Find Full Text PDFUnlabelled: Specimen collection method and quality insurance are pivotal in biomarker discovery. Pre-analytical variables concerning blood collection and sample handling might affect analytical results and should be standardised prior application. In this study, we examine pre-analytical characteristics of blood samples using protein microarray.
View Article and Find Full Text PDFTumour-associated antigens (TAA) can be detected prior to clinical diagnosis and thus would be ideal biomarkers for early detection of cancer using only a few microliters of a patient's serum. In this article we provide a summary of TAA screening and serum-profiling conducted for breast, prostate, lung and colon cancers. Different methodological approaches, including SEREX, SERPA, and phage display for TAA identification and TAA panels are summarised, and a revision of array based techniques is provided.
View Article and Find Full Text PDFBackground: The development of vertebrate limbs has been a traditional system to study fundamental processes at work during ontogenesis, such as the establishment of spatial cellular coordinates, the effect of diffusible morphogenetic molecules or the translation between gene activity and morphogenesis. In addition, limbs are amongst the first targets of malformations in human and they display a huge realm of evolutionary variations within tetrapods, which make them a paradigm to study the regulatory genome.
Results: As a reference resource for future biochemical and genetic analyses, we used genome-wide tiling arrays to establish the transcriptomes of mouse limb buds at three different stages, during which major developmental events take place.