Environ Sci Pollut Res Int
March 2024
Surface ozone and temperature trends were investigated using records from 2000 to 2021 in Southwestern Europe, at El Arenosillo observatory, focusing on June and December. The ozone trends for daily percentiles were increasing in June for lower percentiles (2.5 ± 1.
View Article and Find Full Text PDFThe correct assessment of the radiological hazard from radon and daughters, external and internal doses, residence times and equilibrium factors, implies the need to properly determine Rn (radon), Rn (thoron) and their respective short-lived progenies (Pb and Bi, and Pb and Bi, respectively), where the precise measurements of both progenies are quite complex due to their very short half-lives. In addition, it is important to study the temporal behavior of all these radionuclides along daily cycles. Therefore, the aim of this study was to analyze the temporal evolution of radon, thoron and their progenies, and of their activity ratios along daily cycles for two different meteorological situations (synoptic and mesoscale processes).
View Article and Find Full Text PDFProgeny of Rn and Rn, (Pb, Bi, Pb and Bi) are essential to assess radiological hazard, external and internal doses, residence times and equilibrium factors. Precise measurements of these nuclides are quite complex due to their very short half-lives. This study outlines a new and precise methodology to measure these nuclides.
View Article and Find Full Text PDFSurface ozone trends observed at El Arenosillo observatory for the last 22 years (2000-2021) were investigated. The trends for daily averages and daily 5th and 95th percentiles were 1.2 ± 0.
View Article and Find Full Text PDFIn the past decades, particulate matter (PM) measurements have been used extensively in atmospheric sciences, as it allows studying the evolution of tracers for different atmospheric processes and the effects of atmospheric pollution on human health. However, measuring PM mass requires a constant control of the laboratory conditions due to its capacity to absorb humidity. For this reason, this study was focused on developing a novel, simple and precise methodology to determine the corrections of the filter mass due to humidity changes.
View Article and Find Full Text PDF