Publications by authors named "I Grillasca"

Levonorgestrel (LNG), a contraceptive progestin, exhibits, besides its progestational activity, other hormone-like effects at the peripheral level. To assess whether LNG and its metabolites exert androgenic and/or estrogenic actions at the central nervous system (CNS), their effects on male sexual behavior in castrated rats were examined. LNG, 5alpha-dihydro LNG (5alphaLNG), and the 3alpha,5alpha- and 3beta,5alpha-tetrahydro derivatives of LNG (3alphaLNG and 3betaLNG, respectively) were administered for 3 weeks either alone (1000 microg/day) or in combination (300 microg/day) with 5alpha-dihydrotestosterone (DHT, 300 microg/day) or with estradiol-17beta (E(2), 5 microg/day).

View Article and Find Full Text PDF

Levonorgestrel (13beta-ethyl-17alpha-ethynyl-17beta-hydroxy-4-gonen-3-one), a potent contraceptive progestin stimulates growth and proliferation of cultured breast cancer cells through a receptor-mediated mechanism, even though levonorgestrel does not bind to the oestrogen receptor (ER). To assess whether the oestrogen-like effects induced by this synthetic progestin are exerted via its metabolic conversion products, we studied the binding affinity of three A-ring levonorgestrel derivatives to the ER and their capability to transactivate an oestrogen-dependent yeast system co-transfected with the human ER gene and oestrogen responsive elements fused to a beta-galactosidase reporter vector. The results demonstrated that the 3beta,5alpha reduced levonorgestrel derivative and to a lesser extent its 3alpha isomer interact with the oestrogen receptor, with a significantly lower relative binding affinity (2.

View Article and Find Full Text PDF

Gestodene (13beta-ethyl-17alpha-ethynyl-17beta-hydroxy-4,5-gonadien-3-one), the most potent progestin ever synthesized, stimulates breast cancer cell growth through an oestrogen receptor-mediated mechanism, and its use in hormonal contraception has been associated with side effects attributable to oestrogenic actions. These observations have remained controversial, since gestodene does not bind to the oestrogen receptor or exert oestrogen-like activities. Recently, we have demonstrated that non-phenolic gestodene derivatives interact with oestrogen receptors and induce oestrogenic effects in cell expression systems.

View Article and Find Full Text PDF

Gestodene (17 alpha-ethynyl-13 beta-ethyl-17 beta-hydroxy-4, 15-gonadien-3-one) is the most potent synthetic progestin currently available and it is widely used as a fertility regulating agent in a number of contraceptive formulations because of its high effectiveness, safety and acceptability. The observation that contraceptive synthetic progestins exert hormone-like effects other than their progestational activities, prompted us to investigate whether gestodene (GSD) administration may induce oestrogenic effects, even though the GSD molecule does not interact with intracellular oestrogen receptors (ER). To assess whether GSD may exert oestrogenic effects through some of its neutral metabolites, a series of experimental studies were undertaken using GSD and three of its A-ring reduced metabolites.

View Article and Find Full Text PDF

Norethisterone (NET), a 19-nor synthetic progestin, undergoes enzyme-mediated 5alpha-reduction and exerts potent androgenic effects in target organs. To investigate its mode of androgenic action we examined, in a comparative manner, the in vitro metabolism of NET and testosterone (T), as well as the binding affinities to androgen receptors (AR) and the androgenic potency of NET, T, and their 5alpha-reduced derivatives. Bioconversion of [3H]-NET and [3H]-T was studied in rat prostate homogenates, AR binding affinity was assessed in rat ventral prostates using [3H]-mibolerone as the radioligand, and the androgenic potency was evaluated by the increase of beta-glucuronidase activity in the mouse kidney, and by the growth of accessory sex organs in castrated male rats.

View Article and Find Full Text PDF