Publications by authors named "I Gregora"

The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators.

View Article and Find Full Text PDF

The paper proposes a fully optical method for determination of a cubic crystal grain orientation in a sample inspected by a Raman microscope. The method is based on a universal and strong polarisation anisotropy of the Raman scattering by doubly degenerate optic phonon modes and it only requires a standard Raman microscope equipped with a polarisation analysis. Explicit formulas for the orientation of the crystal grain are derived.

View Article and Find Full Text PDF

Hematite, α-Fe2O3, is considered as one of the most promising materials for sustainable hydrogen production via photoelectrochemical water splitting with a theoretical solar-to-hydrogen efficiency of 17%. However, the poor electrical conductivity of hematite is a substantial limitation reducing its efficiency in real experimental conditions. Despite of computing models suggesting that the electrical conductivity is extremely anisotropic, revealing up to 4 orders of magnitude higher electron transport with conduction along the (110) hematite crystal plane, synthetic approaches allowing the sole growth in that direction have not been reported yet.

View Article and Find Full Text PDF

Polarized Raman, IR, and time-domain THz spectroscopy of orthorhombic lead zirconate single crystals have yielded a comprehensive picture of temperature-dependent quasiharmonic frequencies of its low-frequency phonon modes. It is argued that these modes primarily involve vibrations of Pb ions and librations of oxygen octahedra. Their relation to phonon modes of the parent cubic phase is proposed.

View Article and Find Full Text PDF

Sodium niobate (NaNbO3, or NNO) is known to be antiferroelectric at temperatures between 45 and 753 K. Here we show experimentally the presence of the ferroelectric phase at temperatures between 100 and 830 K in the NNO crystals obtained by top-seeded solution growth. The ferroelectric phase and new phase transitions are evidenced using a combination of thermo-optical studies by variable angle spectroscopic ellipsometry, Raman spectroscopy analysis, and photoelectron emission microscopy.

View Article and Find Full Text PDF