The atomic mobility in liquid pure gallium and a gallium-nickel alloy with 2 at% of nickel is studied experimentally by incoherent quasielastic neutron scattering. The integral diffusion coefficients for all-atom diffusion are derived from the experimental data at different temperatures. DFT-basedmolecular dynamics (MD) is used to find numerically the diffusion coefficient of liquid gallium at different temperatures, and numerical theory results well agree with the experimental findings at temperatures below 500 K.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
We investigate analytically and numerically a basic model of driven Brownian motion with a velocity-dependent friction coefficient in nonlinear viscoelastic media featured by a stress plateau at intermediate shear velocities and profound memory effects. For constant force driving, we show that nonlinear oscillations of a microparticle velocity and position emerge by a Hopf bifurcation at a small critical force (first dynamical phase transition), where the friction's nonlinearity seems to be wholly negligible. They also disappear by a second Hopf bifurcation at a much larger force value (second dynamical phase transition).
View Article and Find Full Text PDFMany experimental studies revealed subdiffusion of various nanoparticles in diverse polymer and colloidal solutions, cytosol and plasma membrane of biological cells, which are viscoelastic and, at the same time, highly inhomogeneous randomly fluctuating environments. The observed subdiffusion often combines features of ergodic fractional Brownian motion (reflecting viscoelasticity) and nonergodic jumplike non-Markovian diffusional processes (reflecting disorder). Accordingly, several theories were proposed to explain puzzling experimental findings.
View Article and Find Full Text PDFWe investigate a basic model of nonlinear Brownian motion in a thermal environment, where nonlinear friction interpolates between viscous Stokes and dry Coulomb friction. We show that superdiffusion and supertransport emerge as a nonequilibrium critical phenomenon when such a Brownian motion is driven out of thermal equilibrium by a constant force. Precisely at the edge of a phase transition, velocity fluctuations diverge asymptotically and diffusion becomes superballistic.
View Article and Find Full Text PDFHydrodynamic memory force or Basset force has been known since the 19th century. Its influence on Brownian motion remains, however, mostly unexplored. Here we investigate its role in nonlinear transport and diffusion within a paradigmatic model of tilted washboard potential.
View Article and Find Full Text PDF