Neuron-glial cell interactions following traumatic brain injury (TBI) determine the propagation of damage and long-term neurodegeneration. Spatiotemporally heterogeneous cytosolic and mitochondrial metabolic pathways are involved, leading to challenges in developing effective diagnostics and treatments. An engineered three-dimensional brain tissue model comprising human neurons, astrocytes, and microglia is used in combination with label-free, two-photon imaging and microRNA studies to characterize metabolic interactions between glial and neuronal cells over 72 hours following impact injury.
View Article and Find Full Text PDFBrain metabolism is essential for the function of organisms. While established imaging methods provide valuable insights into brain metabolic function, they lack the resolution to capture important metabolic interactions and heterogeneity at the cellular level. Label-free, two-photon excited fluorescence imaging addresses this issue by enabling dynamic metabolic assessments at the single-cell level without manipulations.
View Article and Find Full Text PDFIn this paper, we present a 2-photon imaging probe system featuring a novel fluorescence collection method with improved and reliable efficiency. The system aims to miniaturize the potential of 2-photon imaging in the metabolic and morphological characterization of cervical tissue at sub-micron resolution over large imaging depths into a flexible and clinically viable platform towards the early detection of cancers. Clinical implementation of such a probe system is challenging due to inherently low levels of autofluorescence, particularly when imaging deep in highly scattering tissues.
View Article and Find Full Text PDF