Publications by authors named "I Gayduchenko"

Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively.

View Article and Find Full Text PDF

The rapid development of infrared spectroscopy, observational astronomy, and scanning near-field microscopy has been enabled by the emergence of sensitive mid- and far-infrared photodetectors. Superconducting hot-electron bolometers (HEBs), known for their exceptional signal-to-noise ratio and fast photoresponse, play a crucial role in these applications. While superconducting HEBs are traditionally crafted from sputtered thin films such as NbN, the potential of layered van der Waals (vdW) superconductors is untapped at THz frequencies.

View Article and Find Full Text PDF

The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here, we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG).

View Article and Find Full Text PDF

Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes.

View Article and Find Full Text PDF

Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons.

View Article and Find Full Text PDF