The out-of-time ordered correlator (OTOC) is a measure of scrambling of quantum information. Scrambling is intuitively considered to be a significant feature of chaotic systems, and thus, the OTOC is widely used as a measure of chaos. For short times exponential growth is related to the classical Lyapunov exponent, sometimes known as the butterfly effect.
View Article and Find Full Text PDFExcited-state quantum phase transitions (ESQPTs) are critical phenomena that generate singularities in the spectrum of quantum systems. For systems with a classical counterpart, these phenomena have their origin in the classical limit when the separatrix of an unstable periodic orbit divides phase space into different regions. Using a semiclassical theory of wave propagation based on the manifolds of unstable periodic orbits, we describe the quantum states associated with an ESQPT for the quantum standard map: a paradigmatic example of a kicked quantum system.
View Article and Find Full Text PDFOut-of-time-ordered correlators (OTOCs) have been proposed as a probe of chaos in quantum mechanics, on the basis of their short-time exponential growth found in some particular setups. However, it has been seen that this behavior is not universal. Therefore, we query other quantum chaos manifestations arising from the OTOCs, and we thus study their long-time behavior in systems of completely different nature: quantum maps, which are the simplest chaotic one-body system, and spin chains, which are many-body systems without a classical limit.
View Article and Find Full Text PDFWe study the eigenstates of open maps whose classical dynamics is pseudointegrable and for which the corresponding closed quantum system has multifractal properties. Adapting the existing general framework developed for open chaotic quantum maps, we specify the relationship between the eigenstates and the classical structures, and we quantify their multifractality at different scales. Based on this study, we conjecture that quantum states in such systems are distributed according to a hierarchy of classical structures, but these states are multifractal instead of ergodic at each level of the hierarchy.
View Article and Find Full Text PDFTwo properties are needed for a classical system to be chaotic: exponential stretching and mixing. Recently, out-of-time order correlators were proposed as a measure of chaos in a wide range of physical systems. While most of the attention has previously been devoted to the short time stretching aspect of chaos, characterized by the Lyapunov exponent, we show for quantum maps that the out-of-time correlator approaches its stationary value exponentially with a rate determined by the Ruelle-Pollicot resonances.
View Article and Find Full Text PDF