The leucine catabolism pathway intermediate, -3-methylglutaconyl (3MGC) CoA, is considered to be the precursor of 3MGC acid, a urinary organic acid associated with specific inborn errors of metabolism (IEM). -3MGC CoA is an unstable molecule that can undergo a sequence of non-enzymatic chemical reactions that lead to either 3MGC acid or protein 3MGCylation. Herein, the susceptibility of -3MGC CoA to protein 3MGCylation was investigated.
View Article and Find Full Text PDF3-methylglutaconyl (3MGC) CoA hydratase (AUH) is the leucine catabolism pathway enzyme that catalyzes the hydration of -3MGC CoA to 3-hydroxy, 3-methylglutaryl (HMG) CoA. In several inborn errors of metabolism (IEM), however, metabolic dysfunction can drive this reaction in the opposite direction (the dehydration of HMG CoA). The recent discovery that -3MGC CoA is inherently unstable and prone to a series of non-enzymatic chemical reactions provides an explanation for 3MGC aciduria observed in these IEMs.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
October 2022
Doxorubicin (DOX) is an aqueous soluble anthracycline therapeutic widely used in cancer treatment. Although DOX anti-cancer activity is dose-dependent, increased dosage enhances the risk of cardiotoxicity. Despite intensive investigation, the molecular basis of this undesirable side effect has yet to be established.
View Article and Find Full Text PDF3-Methylglutaconic (3MGC) aciduria occurs in numerous inborn errors associated with compromised mitochondrial energy metabolism. In these disorders, 3MGC CoA is produced de novo from acetyl CoA in three steps with the final reaction catalysed by 3MGC CoA hydratase (AUH). In in vitro assays, whereas recombinant AUH dehydrated 3-hydroxy-3-methylglutaryl (HMG) CoA to 3MGC CoA, free CoA was also produced.
View Article and Find Full Text PDF