The process of stone formation in the human body remains incompletely understood, which requires clinical and laboratory studies and the formulation of a new endogenous, nanotechnological concept of the mechanism of origin and formation of crystallization centers. Previously, the mechanism of sialolithiasis was considered a congenital disease associated with the pathology of the ducts in the structure of the glands themselves. To date, such morphological changes of congenital nature can be considered from the position of the intrauterine formation of endogenous bacterial infections complicated by the migration of antigenic structures initiating the formation of crystallization centers.
View Article and Find Full Text PDFRadiographic imaging using X-rays is a tool for basic research and applications in industry, materials science, and medical diagnostics. In this article, we present a novel approach for the generation of X-rays using a vacuum-free microplasma by femtosecond fiber laser. By tightly focusing a laser pulse onto a micrometer-sized solid density near-surface plasma from a rotating copper target, we demonstrate the generation of Cu K-photons (8-9 keV) with high yield ∼ 1.
View Article and Find Full Text PDFTo solve the problems of spectral tomography, an X-ray optical scheme was proposed, using a crystal analyzer in Laue geometry between the sample and the detector, which allowed for the selection of predetermined pairs of wavelengths from the incident polychromatic radiation to obtain projection images. On a laboratory X-ray microtomography setup, an experiment was carried out for the first time where a mixture of micro-granules of sodium chloride NaCl, silver behenate AgCHO, and lithium niobate LiNbO was used as a test sample to identify their spatial arrangement. The elements were chosen based on the presence of absorption edges in two of the elements in the energy range of the polychromatic spectrum of the probing radiation.
View Article and Find Full Text PDFChoroid plexus, pineal gland, and habenula tend to accumulate physiologic calcifications (concrements) over a lifetime. However, until now the composition and causes of the intracranial calcifications remain unclear. The detailed analysis of concrements has been done by us using X-ray diffraction analysis (XRD), X-ray diffraction topography (XRDT), micro-CT, X-ray phase-contrast tomography (XPCT), as well as histology and immunohistochemistry (IHC).
View Article and Find Full Text PDFThe emission of nanoscale particles from the surfaces of dental implants leads to the cumulative effect of particle complexes in the bone bed and surrounding soft tissues. Aspects of particle migration with the possibility of their involvement in the development of pathological processes of systemic nature remain unexplored. The aim of this work was to study protein production during the interaction of immunocompetent cells with nanoscale metal particles obtained from the surfaces of dental implants in the supernatants.
View Article and Find Full Text PDF