Publications by authors named "I G Ashton"

Seaweed farming in Europe is growing and may provide environmental benefits, including habitat provisioning, coastal protection, and bioremediation. Habitat provisioning by seaweed farms remains largely unquantified, with previous research focused primarily on the detrimental effects of epibionts, rather than their roles in ecological functioning and ecosystem service provision. We monitored the development and diversity of epibiont assemblages on cultivated sugar kelp (Saccharina latissima) at a farm in Cornwall, southwest UK, and compared the effects of different harvesting techniques on epibiont assemblage structure.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) intoxicate and asphyxiate marine life, causing devastating environmental and socio-economic impacts, costing at least $8bn/yr globally. Accumulation of phycotoxins from HAB phytoplankton in filter-feeding shellfish can poison human consumers, prompting harvesting closures at shellfish production sites. To quantify long-term intoxication risk from Dinophysis HAB species, we used historical HAB monitoring data (2009-2020) to develop a new modelling approach to predict Dinophysis toxin concentrations in a range of bivalve shellfish species at shellfish sites in Western Scotland, South-West England and Northern France.

View Article and Find Full Text PDF

Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment.

View Article and Find Full Text PDF

Following the outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV-2), airborne water droplets have been identified as the main transmission route. Identifying and breaking all viable transmission routes are critical to stop future outbreaks, and the potential of transmission by water has been highlighted. By modifying established approaches, we provide a method for the rapid assessment of the risk of transmission posed by fecally contaminated river water and give example results for 39 countries.

View Article and Find Full Text PDF

The ocean is a sink for ~25% of the atmospheric CO emitted by human activities, an amount in excess of 2 petagrams of carbon per year (PgC yr). Time-resolved estimates of global ocean-atmosphere CO flux provide an important constraint on the global carbon budget. However, previous estimates of this flux, derived from surface ocean CO concentrations, have not corrected the data for temperature gradients between the surface and sampling at a few meters depth, or for the effect of the cool ocean surface skin.

View Article and Find Full Text PDF