In Vitro Cell Dev Biol Anim
February 2022
Rev Sci Instrum
February 2010
For optimization and accurate prediction of the amount of H-ion production in negative ion sources, analysis of electron energy distribution function (EEDF) is necessary. We are developing a numerical code which analyzes EEDF in the tandem-type arc-discharge source. It is a three-dimensional Monte Carlo simulation code with realistic geometry and magnetic configuration.
View Article and Find Full Text PDFFor optimization and accurate prediction of the amount of H(-) ion production in negative ion sources, analysis of electron energy distribution function (EEDF) is necessary. We developed a numerical code which analyzes EEDF in the tandem-type arc-discharge source. It is a three-dimensional Monte Carlo simulation code with the effects of cusp, filter, and extraction magnets.
View Article and Find Full Text PDFProduction and transport processes of the H(0) atoms are numerically simulated using a three-dimensional Monte Carlo transport code. The code is applied to the large JAEA 10 ampere negative ion source under a Cs-seeded condition to obtain a spatial distribution of surface-produced H(-) ions. In this analysis, we focus on the effect of the energy relaxation of the H(0) atoms at the wall on the H(-) ion production from the H(0) atoms.
View Article and Find Full Text PDFA mouse/human chimeric monoclonal antibody (MAb) KM966, specific for the cell-surface tumor antigen ganglioside GM2, was humanized by the complementarity determining regions (CDRs) grafting method. Not only the amino acid residues in the CDRs but also several in the framework regions (FRs) were changed from the human to the murine residues. A humanized variant, huKM796H/Lm-28, containing eight and five amino acid alterations in variable light (VL) and variable heavy (VH) FRs, respectively, showed a 9-fold reduction in complement-dependent cytotoxicity (CDC) compared to the chimeric KM966, despite tight antigen binding and potent antibody-dependent cellular cytotoxicity (ADCC).
View Article and Find Full Text PDF