Plant Physiol Biochem
September 2010
Solanum torvum is reported to carry resistance to bacterial wilt caused by Ralstonia solanacearum. So, this wild species is used as rootskock for eggplants or tomatoes in naturally infected soil. This study aimed to investigate the involvement of the polyamine metabolism pathway in the resistance mechanisms of this species.
View Article and Find Full Text PDFBackground: Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants.
View Article and Find Full Text PDFThe metabolomic analysis of Vanilla planifolia leaves collected at different developmental stages was carried out using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis in order to evaluate their variation. Ontogenic changes of the metabolome were considered since leaves of different ages were collected at two different times of the day and in two different seasons. Principal component analysis (PCA) and partial least square modeling discriminate analysis (PLS-DA) of (1)H NMR data provided a clear separation according to leaf age, time of the day and season of collection.
View Article and Find Full Text PDFThe metabolomic analysis of developing Vanilla planifolia green pods (between 3 and 8 months after pollination) was carried out by nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis. Multivariate data analysis of the (1)H NMR spectra, such as principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA), showed a trend of separation of those samples based on the metabolites present in the methanol/water (1:1) extract. Older pods had a higher content of glucovanillin, vanillin, p-hydroxybenzaldehyde glucoside, p-hydroxybenzaldehyde, and sucrose, while younger pods had more bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A), bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)tartrate (glucoside B), glucose, malic acid, and homocitric acid.
View Article and Find Full Text PDFCalli induced from Solanum torvum stem explants were inoculated with Ralstonia solanacearum under partial vacuum. All calli showed a hypersensitive response after infiltration. Furthermore, amine oxidase activity with aldehyde and H(2)O(2) production was detected in semi-purified cell walls of calli infiltrated by the bacteria.
View Article and Find Full Text PDF