In vitro models of corticogenesis from pluripotent stem cells (PSCs) have greatly improved our understanding of human brain development and disease. Among these, 3D cortical organoid systems are able to recapitulate some aspects of in vivo cytoarchitecture of the developing cortex. Here, we tested three cortical organoid protocols for brain regional identity, cell type specificity and neuronal maturation.
View Article and Find Full Text PDFHere, we summarize the current knowledge on cell diversity in the cortex and other brain regions from in vivo mouse models and in vitro models based on pluripotent stem cells. We discuss the mechanisms underlying cell proliferation and temporal progression that leads to the sequential generation of neurons dedicated to different layers of the cortex. We highlight models of corticogenesis from stem cells that recapitulate specific transcriptional and connectivity patterns from different cortical areas.
View Article and Find Full Text PDFThe transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex.
View Article and Find Full Text PDF