Various efforts have been made to develop antibacterial biomaterials capable of also sustaining bone remodulation to be used as bone substitutes and reduce patient infection rates and related costs. In this work, beta-tricalcium phosphate (β-TCP) was chosen due to its known biocompatibility and use as a bone substitute. Metal dopants were incorporated into the crystal structure of the β-TCP, and disks were produced from this material.
View Article and Find Full Text PDFThe precipitation of calcium phosphates (CaPs) in the presence of more than one type of additive is of interest both from a fundamental point of view and as a possible biomimetic route for the preparation of multicomponent composites in which the activity of the components is preserved. In this study, the effect of bovine serum albumin (BSA) and chitosan (Chi) on the precipitation of CaPs in the presence of silver nanoparticles (AgNPs) stabilized with sodium bis(2-ethylhexyl)sulfosuccinate (AOT-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and citrate (cit-AgNPs) was investigated. In the control system, the precipitation of CaPs occurred in two steps.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2023
One of the most distinguished quantities that describes lipid main phase transition, i.e. the transition from the gel (L) to the fluid (L) phase, is its melting temperature (T).
View Article and Find Full Text PDFSuperparamagnetic magnetite nanoparticles (MNPs) with excellent biocompatibility and negligible toxicity were prepared by solvothermal method and stabilized by widely used and biocompatible polymer poly(ethylene glycol) PEG-4000 Da. The unique properties of the synthesized MNPs enable them to host the unstable and water-insoluble quercetin as well as deliver and localize quercetin directly to the desired site. The chemical and physical properties were validated by X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), superconducting quantum interference device (SQUID) magnetometer, FTIR spectroscopy and dynamic light scattering (DLS).
View Article and Find Full Text PDFThe constantly growing need for advanced bone regeneration materials has motivated the development of calcium phosphates (CaPs) composites with a different metal or metal-oxide nanomaterials and their economical and environmentally friendly production. Here, two procedures for the synthesis of CaPs composites with TiO nanoplates (TiNPl) and nanowires (TiNWs) were tested, with the immersion of TiO nanomaterials (TiNMs) in corrected simulated body fluid (c-SBF) and precipitation of CaP in the presence of TiNMs. The materials obtained were analyzed by powder X-ray diffraction, spectroscopic and microscopic techniques, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, dynamic and electrophoretic light scattering, and their hemocompatibility and ability to induce reactive oxygen species were evaluated.
View Article and Find Full Text PDF