Publications by authors named "I Elcheva"

Neuroinflammation and the underlying dysregulated immune responses of microglia actively contribute to the progression and, likely, the initiation of Alzheimer's disease (AD). Fine-tuned therapeutic modulation of immune dysfunction to ameliorate disease cannot be achieved without the characterization of diverse microglial states that initiate unique, and sometimes contradictory, immune responses that evolve over time in chronic inflammatory environments. Because of the functional differences between human and murine microglia, untangling distinct, disease-relevant reactive states and their corresponding effects on pathology or neuronal health may not be possible without the use of human cells.

View Article and Find Full Text PDF

Wnt/β-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/β-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/β-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA.

View Article and Find Full Text PDF

Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP1, IGF2BP2, and IGF2BP3) are a family of RNA-binding proteins that play an essential role in the development and disease by regulating mRNA stability and translation of critical regulators of cell division and metabolism. Genetic and chemical inhibition of these proteins slows down cancer cell proliferation, decreases invasiveness, and prolongs life span in a variety of animal models. The role of RNA-binding proteins in the induction of tissues' immunogenicity is increasingly recognized, but, the impact of the IGF2BPs family of proteins on the induction of innate and adaptive immune responses in cancer is not fully understood.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are small lipid bilayer-delimited particles that are naturally released from cells into body fluids, and therefore can travel and convey regulatory functions in the distal parts of the body. EVs can transmit paracrine signaling by carrying over cytokines, chemokines, growth factors, interleukins (ILs), transcription factors, and nucleic acids such as DNA, mRNAs, microRNAs, piRNAs, lncRNAs, sn/snoRNAs, mtRNAs and circRNAs; these EVs travel to predecided destinations to perform their functions. While mesenchymal stem cells (MSCs) have been shown to improve healing and facilitate treatments of various diseases, the allogenic use of these cells is often accompanied by serious adverse effects after transplantation.

View Article and Find Full Text PDF

Background: Although it is well-known that adult and pediatric acute myeloid leukemias (AMLs) are genetically distinct diseases, they still share certain gene expression profiles. The age-related genetic heterogeneities of AMLs have been well-studied, but the common prognostic signatures and molecular mechanisms of adult and pediatric AMLs are less investigated.

Aim: To identify genes and pathways that are associated with both pediatric and adult AMLs and discover a gene signature for overall survival (OS) prediction.

View Article and Find Full Text PDF