The utility of newly developed wearable biosensors for passively, non-invasively, and continuously measuring transdermal alcohol levels in the body in real time has been limited by the fact that raw transdermal alcohol data does not consistently correlate (quantitatively or temporally) with interpretable metrics of breath and blood across individuals, devices, and the environment. A novel method using a population model in the form of a random abstract hybrid system of ordinary and partial differential equations and linear quadratic tracking control in Hilbert space is developed to estimate blood or breath alcohol concentration from the biosensor-produced transdermal alcohol level signal. Using human subject data in the form of 270 drinking episodes, the method is shown to produce estimates of blood or breath alcohol concentration that are highly correlated and thus good predictors of breath analyzer measurements.
View Article and Find Full Text PDFIn 1924 the German psychiatrist Hans Berger made the first electroencephalographical (EEG) recording of cerebral activity in humans. Worldwide, EEG developed into a widely used diagnostic method and was introduced in Sweden in 1937. Today EEG is an essential diagnostic and monitoring standard in epilepsy, sleep disorders, neonatology and intensive care, and provides prognostic information after perinatal asphyxia and cardiac arrest.
View Article and Find Full Text PDFUnderstanding the mechanisms of polyploidization in cardiomyocytes is crucial for advancing strategies to stimulate myocardial regeneration. Although endoreplication has long been considered the primary source of polyploid human cardiomyocytes, recent animal work suggests the potential for cardiomyocyte fusion. Moreover, the effects of polyploidization on the genomic-transcriptomic repertoire of human cardiomyocytes have not been studied previously.
View Article and Find Full Text PDFAn output feedback LQG compensator (combined controller and state estimator) for the regulation of intravenous-infused alcohol studies and treatment using a noninvasive transdermal alcohol biosensor is developed. The design is based on a population model involving an abstract semi-linear parabolic hybrid reaction-diffusion system involving coupled partial and ordinary differential equations with random parameters known only up to their distributions. The scheme developed is based on a weak formulation of the model equations in an appropriately constructed Gelfand triple of Bochner spaces wherein the unknown random parameters are treated as additional spatial variables.
View Article and Find Full Text PDF