Objective: Simultaneous activation of β2- and β3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of β1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel β2-and β3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models.
View Article and Find Full Text PDFβ-Adrenergic receptor (βAR) agonists have been reported to stimulate glucose uptake (GU) by skeletal muscle cells and are therefore highly interesting as a possible treatment for type 2 diabetes (T2D). The chirality of compounds often has a great impact on the activity of βAR agonists, although this has thus far not been investigated for GU. Here we report the GU for a selection of synthesized acyclic and cyclic β-hydroxy-3-fluorophenethylamines.
View Article and Find Full Text PDFStereoselective synthesis of the right-hand heteroaromatic macrocycle of diazonamide A features C16-C18 bond formation in the Suzuki-Miyaura cross-coupling and atropodiastereoselective Dieckmann-type macrocyclization as key steps. The Suzuki-Miyaura cross-coupling gave the best yields when it was catalyzed by a palladium-dioxygen complex.
View Article and Find Full Text PDFThe new histone deacylases inhibitors (HDACi) were synthesized in the class of 5-membered cyclic hydroxamic acids (5-CHA), showing medium size CHA as a new Zn-binding group. New reaction sequence was proposed for the synthesis of 5-membered alkylidene-cyclic-hydroxamic acids starting from butyrolactone. Compound 10c showed low µM activity on HeLa cell extracts.
View Article and Find Full Text PDFAntimalarial hit 1 SR (TCMDC-134674) identified in a GlaxoSmithKline cell based screening campaign was evaluated for inhibitory activity against the digestive vacuole plasmepsins (Plm I, II, and IV). It was found to be a potent Plm IV inhibitor with no selectivity over Cathepsin D. A cocrystal structure of 1 SR bound to Plm II was solved, providing structural insight for the design of more potent and selective analogues.
View Article and Find Full Text PDF